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Molecular simulation trajectories represent high-dimensnal data. Such data can be
visualized by methods of dimensionality reduction. Nondear dimensionality reduction
methods are likely to be more ef cient than linear ones due tahe fact that motions
of atoms are non-linear. Here we test a popular non-linear distributed Stochastic
Neighbor Embedding (t-SNE) method on analysis of traject@s of 200 ns alanine
dipeptide dynamics and 208 s Trp-cage folding and unfolding. Furthermore, we
introduce a time-lagged variant of t-SNE in order to focus omarely occurring transitions
in the molecular system. This time-lagged t-SNE ef cientlgeparates states according
to distance in time. Using this method it is possible to visu&Ze key states of
studied systems (e.g., unfolded and folded protein) as weks possible kinetic traps
using a two-dimensional plot. Time-lagged t-SNE is a visualation method and other
applications, such as clustering and free energy modelingnust be done with caution.

Keywords: molecular dynamics, dimensionality reduction, tra
Component Analysis

jectory analysis, tSNE, Time-lagged Independent

1. INTRODUCTION

The main goal of molecular simulations is identi cation oék states of studied systems and
building thermodynamic and kinetic models of transitionstiween these states. Identi cation of
key states is often based on some numerical descriptors krasacollective variables. Distance
between two atoms can be seen as one of the simplest colleetiables. It can be used,
for example, to distinguish between the bound and unboundesta a simulation of protein-
ligand interaction. For some more complex processes it is sacgso use more complex
collective variables.

Collective variables are in fact dimensionality reductioathods because they represent high
dimensional structure of a molecular system using few nucaédescriptors. It is therefore no
surprise that general linear and non-linear dimensionaligguction methods have been applied
on molecular simulation trajectories. Namely, principal quonent analysisAmadei et al., 1993;
Spiwok et al., 2007; Sutto et al., 2Daad its dihedral versionMu et al., 200} di usion maps
(Ferguson et al., 2010, 2Q1&ketch map Ceriotti et al., 2011; Tribello et al., 2Q1komap Pas
et al., 2006; Brown et al., 2008; Spiwok and Kralova, 2@utoencodersGhen and Ferguson,
2019, t-SNE {ran der Maaten and Hinton, 2008; Duan et al., 2013; Tribeil @Gasparotto, 2099
and others Plaku et al., 2007; Stamati et al., 2010; Noé and Clemerith) have been tested in
analysis of trajectories, data compression or sampling erdragat.
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Advantage of non-linear dimensionality reduction methasls occur most rarely, i.e., those with the highest barriersisTh
their ability to describe more variance in data comparedite$ir  can be done by Time-lagged Independent Component Analysis
methods with the same number of dimensions. This is espgcial(TICA) (Molgedey and Schuster, 1994; Perez-Hernandez et al.,
true for t-distributed Stochastic Neighbor Embedding (5 2013; Schwantes and Pande, 20IHCA extracts the most
(van der Maaten and Hinton, 200.8This method became highly rarely occurring transitions in the molecular system besmit
popular in many elds, including data science, bioinformatic correlates the state of the system with the state of the sgsters
and computational linguistics. after a short delay (lag). This lag can be controlled.

There are two features of t-SNE that contributed to its Here we attempt to join the advantages of t-SNE and TICA
success. First, t-SNE converts high-dimensional poinsliowv-  into a single method of time-lagged t-SNE. The method was
dimensional points in a way to reproduce their proximity tested on two molecular trajectories—on 200 ns simulatién o
rather than distance. For example, for a bioinformaticianalanine dipeptide and 208.8s simulation of Trp-cage mini-
analyzing genomic data to develop genomics-based diagnogirotein folding and unfolding (trajectory kindly provided HyE
it is important that samples with the same diagnosis are clos8haw Research))iidor -Larsen et al., 201)L
to each other after dimensionality reduction. It is unimpant
how distant are samples with di erent diagnosis, provided tha2, METHODS
they are distant enough. In t-SNE the distances in the high-
dimensional spacBj D kX; Xjk are converted into proximities Time-lagged t-SNE is inspired by implementation of TICA
pjj as: using the AMUSE algorithm Hyvarinen et al., 2001 We

start with atomic coordinateX(t) recorded over time. First,
N exp( Dﬁ:z i2) coordinates are superimposed to reference coordinates of the
P D wpeXp( D2=2 2’ @ system to eliminate translational and rotational motiongteA
L that, time-averaged coordinates are subtracted, leadiagdmic
where i2 is the variance of a Gaussian centered on a datapgint displacementX{t). Next, its covariance matrix is calculated as:
(discussed later). The matrix of proximities is then symrized. %0 _
Next, proximities in the low-dimensional spagg are calculated G D hXAXAD)I, 3)
from distances in the low-dimensional spateas:

wherei andj are indexes of atomic coordinates ahddenotes

time-averaging. Next, covariance matrix is decomposed to a
. (2) diagonal matrix with eigenvalues®’ (the square matrix with
ko1 C di) ! eigenvalues on diagonal and zeros elsewhere) and eigervect

) N ) _ _ ) wX’ (the matrix with eigenvectors as columns):
Finally, positions of points in the low-dimensional space are

optimized to minimize Kullback-Leibler divergences mf and WX p wx® X° (4)
gjj (a sort of a distance between proximitiganda).

The second advantage of t-SNE lies in the fact that it uni eCoordinatesX{t) are transformed onto principal components
density of low-dimensional points in the output space. Thisand normalized by roots of eigenvalues (space-whitening the
feature, which can be controlled by a parameter called petylexi signal) to get attened normalized projections:
makes visual representation of points more e ective. Perpfexit
is related to variances? of Gaussians centered on datapoints Y(©) D ( X9 122((WXO)TX°(t)). (5)

Xj. Uni cation of densities is done by di erent varianceqz.

The user can specify the value of perplexity. t-SNE searches fatime-lagged covariance matrix is calculated as:

optimal values of 2 in order to produce values of 2 1P °%Pi

to match the prede ned perplexity. Low perplexity (e.g., 5) Gl D hi(t)YjtC )i, (6)
forces focus on local structure of the input data whereaselarg ) ) ) -
perplexity (e.g., 50) takes more global structure into theaot. ~ Where is an adjustable time lag. Because the maCixs
As discussed later, this feature improves visualization-8E ~ NON-Symmetric it must be symmetrized as:

but at the same time it complicates application in situationgwh v v T

preservation of densities is required. CsymD 122(C" C(C") ). )

Disadvantage of application of general dimensionality
reduction methods on molecular simulation trajectorieghiat ~ Next, this symmetric matrix is decomposed to eigenvalueand
these methods pick the most intensive (in terms of ChangegigenvectorWY:
of atomic coordinates) motions in the system. However, such
motions are often not interesting. For example, such inteasi
motions may represent motions of disordered loops or terminakinally, Y(t) are transformed onto principal components and

1Ccd) !
gj D ( !

CoynWY D WY . 8)

chains in proteins. expanded by eigenvalues:
Instead, for building of thermodynamic and kinetic models
or to enhance sampling it is useful to extract motions that ZD ( HF2(WNTY). (9)
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FIGURE 1 | Time-lagged t-SNE (t-t-SNE) applied on 200 ns simulation aflanine dipeptide in water. Conformations sampled in the siulations were projected into the
space of Ramachandran torsions and (A,E), TICA coordinates(B,F), t-SNE (C,G) and time-lagged t-SNE(D,H). Points are colored by Ramachandran torsion
(A-D)and (E-H).

This step expands distances in directions with highesby Amber99SB-ILDN force eldl(indor -Larsen et al., 201))
autocorrelations, which represent directions of rarelySimulation step was set to 2 fs and all bonds were constrained
occurring transitions. by LINCS algorithm (ess et al., 1997Electrostatic interactions
It is possible to use certain number of eigenvectors wittwere treated by particle-mesh Ewald methdda(den et al.,
highest eigenvalues instead of all eigenvectors. Thisteslenay 1999. Temperature was kept constant (NVT ensemble) at 300
be driven by relaxation time decays (s&ehmeyer et al., 20)9 K by V-rescale thermostaB(ssi et al., 2007
but this is out of scope of this article. The trajectory of Trp-cage folding and unfolding was kindly
t-SNE can be applied on distances between simulatioprovided by DE Shaw Research.
snapshots calculated in the spac& afs:

DyoD kZ(t)  Z(t9k. @0) 3.RESULTS

Low-dimensional embeddings obtained in this step are farth The method was tested on two molecular systems—on alanine
referred to as time-lagged t-SNE coordinates (t-t-SNE)r Fodipeptide and Trp-cage. In order to test time-lagged t-SNE we
the sake of comparison, low-dimensional embedding obtainedompare time-lagged t-SNE with standard t-SNE and TICA.

by standard TICA (without t-SNE step) and standard t-SNE

(without TICA step) were also calculated and are furthermefé ~ 3.1. Alanine Dipeptide

to as TICA coordinates and t-SNE coordinates, respectively. Time-lagged t-SNE was rst applied on a trajectory of alanine
SNE and t-t-SNE coordinates are unit-free because theyedre glipeptide without water and hydrogen atoms. It is important
in order to t the corresponding unit-free proximities (botl®  to remove hydrogen atoms because rotamers of methyl groups
and in Equation 1 are measured in the same units). It must by approx. 120 deg are mathematically distinguishable but
kept in mind that t-SNE and t-t-SNE use random initiation of chemically identical. The trajectory was sampled every 20 ps
low-dimensional points, so recalculation leads to a di erptdt. (10,001 snapshots). Time lagwas set to 3 frames (60 ps). The

All analyses were done by programs written in Pythonvalue of perplexity was set to 3.0 and Euclidean space was used to
with MDtraj (McGibbon et al., 200)5(for reading trajectories), calculate the distance matrix.

PYyEMMA (Wehmeyer et al., 20)qfor testing of algorithms), The value of lag time was chosen based on TICA results.
numpy (Oliphant, 2009 (to implement AMUSE algorithm) and Similar calculations with lag time set to 1 to 12 steps show tha
scikit-learn Pedregosa et al., 201(to run t-SNE) libraries. It lag time set to 1-7 works well on a simple system such as alanine
is available at GitHub (https:/github.com/spiwokv/titsnapd  dipeptide (seeSupplementary Materia). All eigenvectorsw”
using PyPI. were used in Equation (9).

The trajectory of alanine dipeptide was obtained by unbiased The results are depicted iRigure 1 Plots in the space of
200 ns molecular dynamics simulation of a system containinfRamachandran torsions show that all relevant conformation
alanine dipeptide and 874 TIP3Bdrgensen et al., 198®%ater  of alanine dipeptide were sampled. Plots in the space of TICA
molecules in GromacsApraham et al., 20)51t was modeled coordinates show that rotation around is the slowest and

Frontiers in Molecular Biosciences | www.frontiersin.org 3 June 2020 | Volume 7 | Article 132


https://github.com/spiwokv/tltsne
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

Spiwok and Krie Time-Lagged t-SNE

FIGURE 2 | Time-lagged t-SNE (t-t-SNE) applied on 208.8 s of Trp-cage folding and unfolding. The trajectory was angked by t-SNE (A) and time-lagged t-SNE
(B—-G). Points are colored by RMSD from the native structuréA,B) and by the rst (C), second (D), third (E), fourth (F), and fth (G) TICA coordinate.

rotation around is the second slowest motion in the studied3.2. Trp-Cage
system (slowest in terms of number of occurrences). t-SNE and time-lagged t-SNE analysis was performed on the
Plots in the space of t-SNE coordinates have a circularajectory of Trp-cage folding and unfolding sampled every 20
shape cut into multiple pieces by borders between dierenhs (10,440 snapshots). Lag time was set to three frames (60 ns)
conformers. These plots show a limitation of conventional t-Similarly to alanine dipeptide, lag time was chosen based on
SNE, which is an improper resolution of conformations. Namely TICA analysis. Comparison of embeddings calculated for lag
there is a green island in the blue area of the plot colored byime setto 1, 2, 3, 4,5, 10, 15, and 20 (in number of framesysho
values (G). that lag time 1-5 works well (s&upplementary Materia).
Time-lagged t-SNE (t-t-SNE) does not su er this problem. Perplexity was set to 10.0. Several values were tested and
The blue area in the plot generated by time-lagged tSNE iserplexity setto 10 performs well in terms of the focus on local vs
continuous and does not contain any islands of conformagion global structure of dataSupplementary Materialcontains the
with positive values (H). This can be explained by the fact thatresults obtained for perplexity 5, 10, 20, 50, and 100. Thes#tse
introduction of a time lag into t-SNE causes higher separatib indicate that time-lagged t-SNE is relatively robust in terafs
key conformations of alanine dipeptide. choice of perplexity and perplexity 10 and higher perform well.
One feature is common to the original t-SNE as well as Initial analysis by time-lagged t-SNE resulted in a circular
our time-lagged variant. This is the fact that t-SNE atteihe  plot with multiple points located outside clusters on the edges
distribution of points in the output space. This results in anof the circle. This indicates that there are many points wiitpth
almost uniform distribution of points in each minimum. distancesD; to. In order to eliminate these points we reduced
It is possible to calculate a histogram of some moleculathe number of eigenvectoM/Y to top 50 eigenvectors (option
collective variable or collective variables and converinto  -maxpcs in the code).
a free energy surface. Most common interpretation of such The results are depicted iRigure 2 Figure 2A shows the
free energy surfaces is that deep minima correspond to stabigjectory analyzed by conventional t-SNE colored by RMSD
states, whereas shallow minima correspond to unstablesstatérom the native structure (PDB ID: 1lI2yeidigh et al., 2002
This approach can be applied for conventional descriptorsThere is a clear relationship between t-SNE coordinates, in
such as Ramachandran angles of alanine dipeptide. Howevearticular t-SNE1, and RMSD. The native structure (in red)
due to attening of distribution of points by t-SNE or by forms a cluster in the top left corner of the plot. Structures
time-lagged t-SNE such free energy surface is relatively awith high RMSD (in blue) are characterized by highest values
Populations of di erent states can be estimated from areas aff t-SNE1.
free energy minima rather than from their depths. In general, The trajectory analyzed by time-lagged t-SNE colored by
time-lagged t-SNE (as well as t-SNE) must be used with cauticRMSD is depicted ifrigure 2B Similarly toFigure 2Athe native
when applied to identify metastable states and to calculae fr structure forms a distinct cluster. In contrast to the contienal
energy surfaces. t-SNE, structures with high values of RMSD are scattered in the
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FIGURE 3 | Representative structures projected onto time-lagged t-8SIE embeddings. Plot is colored by RMSD from the native struate (as inFigure 2B ).

large cluster in the center. This indicates that transisdretween more e ciently than TICA itself, because these motions can be
high-RMSD structures are fast. depicted in a single plot.

Figures 2C-G show the same plots colored by TICA  Figure 3 shows representative structures of Trp-cage from
coordinates. The rst TICA coordinateHigure 2Q) distinguishes the simulation trajectory projected onto time-lagged t-SNE
folded and unfolded structures. Plots colored by other TICAembeddings. Structure 1 is the native structure. Structuie a
coordinates Figures 2D—Q in most cases show a red or blue known near-native structure. Structures 2—6 were sampleh fr
clusters on edges of the plot. This shows that time-laggedE-SNclusters on peripheral areas of time-lagged t-SNE embeddings
captures rarely occurring transitions characterized by AlBut  Finally, structure 8 was taken from the origin of the plot. Vs
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FIGURE 4 | Visualization of folding eventgA) and kinetic traps (B). Four
selected folding events (at approx. 20, 40, 104 and 206 s in red, yellow,
green, and blue, respectively) are depicted as last 10 franse(200 ns) before
reaching t-t-SNE2<  75. Four selected kinetic traps on edges of the plot are
depicted as connected series of snapshots. These regions we sampled for
800 (red), 140 (yellow), 400 (green), and 460 (blue) ns.

inspection indicates that structures 2—6 may be kinetic trajps
Trp-cage folding, because these structures are charazdeliy

plots show snapshots sampled last 200 ns (10 snapshots) before
folding. Unfortunately, we were not able to provide higher
resolution of time, because this would require either arialgé
a higher number of snapshots or recalculation of time-lagged
SNE. The former was not possible due to computational costs,
the latter due to impossibility of calculation of time-lagbteSNE
on out-of-sample structures (discussed later). Despite &@dhit
resolution of time, the plot shows that unfolded and folded
structures are clearly separated. The fact that some folding
processes passed clusters on edges of the plot close to the
native structure may indicate that these clusters are nadirve
metastable states.

In previous paragraphs we interpreted clusters on edges of
the plot (structures 2—6 ifrigure 3). We investigated how long
the system stayed in these regions. The results are shown in
Figure 4B The system stayed in these regions for 140-800 ns.
This supports our interpretation of these regions as kinetips.
Interestingly, all four regions depicted ifigure 4Bwere sampled
multiple times in the simulation.

4. DISCUSSION

Dimensionality reduction methods are frequently used tolgpra
data from biomolecular simulations. Linear methods such as
PCA have been used for decades, whereas application of non-
linear methods is relatively new. Various linear and namekr
dimensionality reduction methods have various advantages
and disadvantages.

PCA and other linear methods are easy to use (no additional
parameters have to be set), they realistically map densifies o
states from the high-dimensional to low-dimensional spacé an
it is straightforward to calculate low-dimensional embéedy
for a new out-of-sample structure. On the other hand, their
performance in visualization is low because they usually requi
three or more dimensions to separate key states of the
studied system.

Non-linear methods perform much better in dimensionality
reduction but mapping of densities may be distorted (this is
the case of t-SNE and its time-lagged variant, which tend to
atten the output densities) and calculation of low-dimeaosal
embeddings for a new out-of-sample structure is complicated.
t-SNE is useful specially for visualization purposes.

Comparison of t-SNE and time-lagged t-SNE shows a
great advantage of our varianEigure 2A shows that t-SNE
coordinates correlate with RMSD from the native structureeTh
yellow-green-blue cloud of non-native structures in this tplo
represents a pool of non-native conformations in which short-
living and long-living states overlap. On the other hand, lre t
time-lagged t-SNE there are short-living states in the cearel
long-living states, including the native state, are lodaiae the
edges of the plot. In a single plot it is possible to distinguish

formation of numerous non-native hydrogen bonds and othermultiple key long-living states.

interactions. Also the near-native structure 7 is likelylde a
kinetic trap of Trp-cage folding.

There is a disadvantage of time-lagged methods in their
dependence on the choice of lag time. Choice of lag time fog{im

In order to further interpret the plot we visualized four lagged t-SNE was driven by TICA analysis. Values of 3 frames

selected folding events. They are depictedrigure 4A. These

(60 ps, 0.03% of the whole trajectory) for alanine dipeptide and
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3 frames (60 ns, 0.029% of the whole trajectory) for Trp-cade|  One of key features of t-SNE is that it can reconstruct
to visually plausible low dimensional embeddings. Thisdadies proximities and not distances in the low-dimensional output
that 0.03% of trajectory size is a good initial choice of lagpt space. In time-lagged t-SNE this means that states separated by
Another disadvantage of time-lagged t-SNE is in distortidn low energy barriers are close to each other. States sepdmated
densities and impossibility to easily calculate low-dimienal large energy barriers are far from each other, but time-4abg
embeddings for a new out-of-sample structure. As arSNE does not attempt to preserve their distances accurateiy. Th
alternative to time-lagged t-SNE it is possible to use timemeans that two close points in the time-lagged t-SNE plot can be
lagged autoencoders recently reported\byzhmeyer and Noe connected by an energetically favorable path.
(2018) Autoencoders are feed-forward neural networks with an  Another key feature of t-SNE is perplexity and the fact that t-
hourglass-like architecture. The input signal (atomic aiinates SNE attens the distribution of points in the output space. This
or other features) from the input layer are transformed viais useful for visualization. For this reason t-SNE (as wetiias-
hidden layers into the central bottleneck layer. Next, tlgnal lagged t-SNE) must be used with caution as a pre-processing for
from the bottleneck layer is transformed via hidden layer®i calculation of free energy surfaces and for clustering. E$hin
the output layers. Parameters of the network are trained taiob  also create arti cial clusters when perplexity is not set properl
agreement between the input and output signal. The signal in
the bottleneck layer represents a non-linear low-dimenalon DATA AVAILABILITY STATEMENT
representation of the input signal. Unlike classical autoelecs,
time-lagged autoencoders focus on the most rarely occgrrinThe datasets generated for this study can be found in the Wttps:
transitions, not on the most intensive motiong/ghmeyer and  github.com/spiwokv/tltsne.
Nog, 201%
The clear advantage of autoencoders and their timeAU THOR CONTRIBUTIONS
lagged variant is the possibility to calculate low-dimensio
embeddings for a new out-of-sample structure. Extensiints Both authors developed the method and wrote the manuscript.
of time-lagged autoencoders in the original articleghmeyer VS wrote codes and run simulations and analysis.
and Noé, 201Bwas possible owing to this fact. Time-lagged
autoencoders can be trained on a training set and tested
a validation set, i.e., they can be evaluated by crossat@id FUNDING
Furthermore, they can be trained on a small training setdveht  This work was funded by COST action OpenMultiMed
applied on a large set of input data. This is e cient since the(ca15120, Ministry of Education, Youth and Sports of the Czech
training part is in general signi cantly more expensive thatet  Reppjic | TC18074), Czech Science Foundation (19-16857S),
calculation of embeddings on out-of-sample structures. Fime,nq czech National Infrastructure for Biological Data (ELR
lagged autoencoders are useful for pre-processing of staictu CZ, Ministry of Education, Youth and Sports of the Czech
data for building of Markov state models. Republic LM2015047).
There are limited options for calculation of t-SNE low-
dimensional embeddings for out-of-sample structures.
Therefore, t-SNE and time-lagged t-SNE are not suitab ECKNOWLEDGMENTS
for pre-processing of the structural data. We see the advardfg
time-lagged t-SNE (similarly to t-SNE) in visualization.
Time-lagged t-SNE in the currentimplementation also canno
be used as collective variables in simulations using biss fo
or bias potential because these methods require on-the- SUPPLEMENTARY MATERIAL
calculation of low-dimensional embeddings and their datives
with respect to atomic coordinates. However, there are tool$he Supplementary Material for this article can be found
to approximate such low-dimensional embeddin§eivok and online at: https://www.frontiersin.org/articles/10.388nolb.
Krélova, 2011; Sultan and Pande, 2018; Trapl et al.)2019 2020.00132/full#supplementary-material

Authors would like to thank D. E. Shaw Research for data used in
lthis work.

REFERENCES structure  analysis. J. Chem. Phys 129:064118. doi: 10.1063/1.
2968610

Abraham, M. J., Murtola, T., Schulz, R., Pall, S., Smith, J. C., Hesst 8. Bussi, G., Donadio, D., and Parrinello, M. (2007). Canonical sagpli

(2015). GROMACS: High performance molecular simulations through multi-  through velocity-rescaling.J. Chem. Phys126:014101. doi: 10.1063/1.

level parallelism from laptops to supercomputesftwareX1-2, 19-25. 2408420

doi: 10.1016/j.s0ftx.2015.06.001 Ceriotti, M., Tribello, G. A., and Parrinello, M. (2011). Simplifying eth
Amadei, A., Linssen, A. B., and Berendsen, J. (1993). H. Esisenti representation of complex free-energy landscapes using sketch-map.

dynamics of proteins. Prot. Struct. Funct. Bioinform 17, 412-425. Proc. Natl. Acad. Sci. U.S.A08, 13023-13028. doi: 10.1073/pnas.11084

doi: 10.1002/prot.340170408 86108

Brown, W. M., Martin, S., Pollock, S. N., Coutsias, E. A., and Wmats Chen, W., and Ferguson, L. A. (2018). Molecular enhanced sampling
J.-P.  (2008). Algorithmic dimensionality reduction for molecular  with autoencoders: on-the-y collective variable discovery autelerated

Frontiers in Molecular Biosciences | www.frontiersin.org 7 June 2020 | Volume 7 | Article 132



Spiwok and Krie

Time-Lagged t-SNE

free energy landscape exploratiod. Comput. Chem39, 2079-2102.

doi: 10.1002/jcc.25520
Darden, T., York, D., and Pedersen, L. (1998). Particle mesh Ewaldy

Perez-Hernandez, G., Paul, F., Giorgino, T., de Fabritiis, Gd, Hné, F.
(2013). Identi cation of slow molecular order parameters for Markovaeb
construction.J. Chem. Phy439:015102. doi: 10.1063/1.4811489

log(N) method for Ewald sums in large systems. J. Chem. Phys. 98:100&laku, E., Stamati, H., Clementi, C., and Kavraki, L. E. (2007).drakreliable

doi: 10.1063/1.464397
Das, P., Moll, M., Stamati, H., Kavraki, L. E., and Clementi, C. (ROO8&w-
dimensional, free-energy landscapes of protein-folding reactignsoblinear

dimensionality reduction.Proc. Natl. Acad. Sci. U.S.A03, 9885-9890.

doi: 10.1073/pnas.0603553103

Duan, M., Fan, J., Li, M., Han, L., and Huo, S. (2013). Evaloatidimensionality-
reduction methods from peptide folding-unfolding simulationd. Chem.
Theory Comput9, 2490-2497. doi: 10.1021/ct400052y

Ferguson, A. L., Panagiotopoulos, A. Z., Debenedetti, P.r@. Kavrekidis, G.
1. (2010). Systematic determination of order parameters for chgimacics

using diusion maps. Proc. Natl. Acad. Sci. U.S.A07, 13597-13602.

doi: 10.1073/pnas.1003293107

Ferguson, A. L., Panagiotopoulos, A. Z., Kevrekidis, |. G., Bethenedetti,
P. G. (2011). Nonlinear dimensionality reduction in
simulation: the diusion map approachChem. Phys. Lett509, 1-11.
doi: 10.1016/j.cplett.2011.04.066

Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. EBM).(LINCS:
a linear constraint solver for molecular simulations. Comp. Chem18,
1463-1472. doi: 10.1002/(SICI)1096-987X(199709)18463<AID-IJCC4>3.
0.CO;2-H

Hyvarinen, A., Karhunen, J., and Oja, E. (200dj)lependent Component Analysis

New York, NY: John Wiley & Sons Int. doi: 10.1002/0471221317
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, BRndKlein, M. L.
(1983). Comparison of simple potential functions for simulating ldjwater.
J. Chem. Phyg9, 926-935. doi: 10.1063/1.445869
Lindor -Larsen, K., Piana, S., Dror, R. O., and Shaw, A. D.1®0 How

fast-folding proteins fold. Science334, 517-520. doi: 10.1126/science.

1208351
Lindor -Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klegkis., O Dror,
R., et al. (2010). Improved side-chain torsion potentials for timeb&r 99SB
protein force eld.Proteins78, 1950-1958. doi: 10.1002/prot.22711
McGibbon, R. T., Beauchamp, K. A., Harrigan, M. P., Klein, C., Swadi

M., Hernandez, C. X., et al. (2015). MDTraj: a modern open library for
the analysis of molecular dynamics trajectoriB®phys. .J109, 1528-1532.

doi: 10.1016/j.bpj.2015.08.015
Molgedey, L., and Schuster, G. H. (1994). Separation of a mixtunelependent

signals using time delayed correlationBhys. Rev. Lett72, 3634-3637.

doi: 10.1103/PhysRevLett.72.3634

Mu, Y., Nguyen, P. H., and Stock, G. (2005). Energy landscaperofli peptide
revealed by dihedral angle principal component analyRist. Struct. Funct.
Bioinform 58, 45-52. doi: 10.1002/prot.20310

Neidigh, J. W., Fesinmeyer, R. M., and Andersen, N. H. (2002kidhing a
20-residue proteinNat. Struct. Bial9, 425-430. doi: 10.1038/nsb798

Noé, F., and Clementi, C. (2015). Kinetic distance and kinetps from

molecular dynamics simulation). Chem. Theory Computl, 5002-5011.

doi: 10.1021/acs.jctc.5b00553
Oliphant, T. E. (2006)A Guide to NumPySpanish Fork, UT: Trelgol Publishing.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,@isel, O.,
etal. (2011). Scikit-learn: Machine learning in PythdnMach. Learn. Re®2,
2825-2830.

molecular

analysis of molecular motion using proximity relations and dimensidpali
reduction.Prot. Struct. Funct. Bioinforn7, 897-907. doi: 10.1002/prot.21337

Schwantes, C. R., and Pande, S. V. (2013). Improvements in Maikevnsodel
construction reveal many non-native interactions in the foldiogNTL9. J.
Chem. Theory Compu@, 2000—2009. doi: 10.1021/ct300878a

Spiwok, V., and Krélova, B. (2011). Metadynamics in the confoinati space
nonlinearly dimensionally reduced by Isomap. Chem. Physl35, 224504
doi: 10.1063/1.3660208

Spiwok, V., Lipovova, P, and Kralova, B. (2007). Metadynamicsssergial
coordinates: free energy simulation of conformational changeBhys. Chem.
B111, 3073-3076. doi: 10.1021/jp068587¢

Stamati, H., Clementi, C., and Kavraki, L. E. (2010). Application aflimear
dimensionality reduction to characterize the conformational laoagse of small
peptidesProt. Struct. Funct. Bioinform?8, 223—-235. doi: 10.1002/prot.22526

Sultan, M. M., and Pande, S. V. (2018). Automated design of tiokec
variables using supervised machine learnidg.Chem. Phys149:094106.
doi: 10.1063/1.5029972

Sutto, L., Dabramo, M., and Gervasio, F. L. (2010). Comparing ttieney
of biased and unbiased molecular dynamics in reconstructing the fre
energy landscape of met-enkephalin.Chem. Theory Comp@&, 3640-3646.
doi: 10.1021/ct100413b

Trapl, D., Horvacanin, I., Mareska, V., Ozcelik, F., Unal, G., and &pi¥. (2019).
Anncolvar: approximation of complex collective variables by arti cialira
networks for analysis and biasing of molecular simulatidtrent. Mol. Biosci
6:25. doi: 10.3389/fmolb.2019.00025

Tribello, G. A., Ceriotti, M., and Parrinello, M. (2012). Using sketap
coordinates to analyze and bias molecular dynamics simulat®rez. Natl.
Acad. Sci. U.S.A09, 5196-5201 doi: 10.1073/pnas.1201152109

Tribello, G. A., and Gasparotto, P. (2019). Using dimensionality
reduction to analyze protein trajectoriedront. Mol. Biosci 6:46
doi: 10.3389/fmolb.2019.00046

van der Maaten, L. J. P., and Hinton, G. E. (2008). Visualizigh4dimensional
data using t-SNE]. Mach. Learn. Re8, 2579-2605.

Wehmeyer, C., and Noé, F. (2018). Time-lagged autoencodezp: ldarning of
slow collective variables for molecular kinetids.Chem. Phys148:241703.
doi: 10.1063/1.5011399

Wehmeyer, C., Scherer, M. K., Hempel, T., Husic, B. E., Olsson, S.FN@®19).
Introduction to Markov state modeling with the PYyEMMA softwataving J.
Comp. Mol. Scil:5965. doi: 10.33011/livecoms.1.1.5965

Con ict of Interest: The authors declare that the research was conducted in the
absence of any commercial or nancial relationships that coulddrestrued as a
potential con ict of interest.

Copyright © 2020 Spiwok andriK This is an open-access article distributed
under the terms of the Creative Commons Attribution Licé@€eBY). The use,
distribution or reproduction in other forums is permittedpypded the original
author(s) and the copyright owner(s) are credited and thabttginal publication

in this journal is cited, in accordance with accepted acamdpractice. No use,
distribution or reproduction is permitted which does notgly with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org

June 2020 | Volume 7 | Article 132



