
ORIGINAL RESEARCH
published: 30 June 2020

doi: 10.3389/fmolb.2020.00132

Frontiers in Molecular Biosciences | www.frontiersin.org 1 June 2020 | Volume 7 | Article 132

Edited by:
Pratyush Tiwary,

University of Maryland, College Park,
United States

Reviewed by:
Carlo Camilloni,

University of Milan, Italy
Steffen Wolf,

University of Freiburg, Germany
James Joseph McCarty,

Western Washington University,
United States

*Correspondence:
Vojt�ech Spiwok

spiwokv@vscht.cz

Specialty section:
This article was submitted to

Biological Modeling and Simulation,
a section of the journal

Frontiers in Molecular Biosciences

Received: 06 March 2020
Accepted: 03 June 2020
Published: 30 June 2020

Citation:
Spiwok V and K�rí• P (2020)

Time-Lagged t-Distributed Stochastic
Neighbor Embedding (t-SNE) of

Molecular Simulation Trajectories.
Front. Mol. Biosci. 7:132.

doi: 10.3389/fmolb.2020.00132

Time-Lagged t-Distributed
Stochastic Neighbor Embedding
(t-SNE) of Molecular Simulation
Trajectories
Vojt �ech Spiwok 1* and Pavel K �rí• 2

1 Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia,2 Department of
Mathematics, University of Chemistry and Technology, Prague, Czechia

Molecular simulation trajectories represent high-dimensional data. Such data can be
visualized by methods of dimensionality reduction. Non-linear dimensionality reduction
methods are likely to be more ef�cient than linear ones due tothe fact that motions
of atoms are non-linear. Here we test a popular non-linear t-distributed Stochastic
Neighbor Embedding (t-SNE) method on analysis of trajectories of 200 ns alanine
dipeptide dynamics and 208 � s Trp-cage folding and unfolding. Furthermore, we
introduce a time-lagged variant of t-SNE in order to focus onrarely occurring transitions
in the molecular system. This time-lagged t-SNE ef�cientlyseparates states according
to distance in time. Using this method it is possible to visualize key states of
studied systems (e.g., unfolded and folded protein) as wellas possible kinetic traps
using a two-dimensional plot. Time-lagged t-SNE is a visualization method and other
applications, such as clustering and free energy modeling,must be done with caution.

Keywords: molecular dynamics, dimensionality reduction, tra jectory analysis, tSNE, Time-lagged Independent
Component Analysis

1. INTRODUCTION

The main goal of molecular simulations is identi�cation of key states of studied systems and
building thermodynamic and kinetic models of transitions between these states. Identi�cation of
key states is often based on some numerical descriptors knownas collective variables. Distance
between two atoms can be seen as one of the simplest collectivevariables. It can be used,
for example, to distinguish between the bound and unbound state in a simulation of protein-
ligand interaction. For some more complex processes it is necessary to use more complex
collective variables.

Collective variables are in fact dimensionality reductionmethods because they represent high
dimensional structure of a molecular system using few numerical descriptors. It is therefore no
surprise that general linear and non-linear dimensionality reduction methods have been applied
on molecular simulation trajectories. Namely, principal component analysis (Amadei et al., 1993;
Spiwok et al., 2007; Sutto et al., 2010) and its dihedral version (Mu et al., 2005), di�usion maps
(Ferguson et al., 2010, 2011), sketch map (Ceriotti et al., 2011; Tribello et al., 2012), Isomap (Das
et al., 2006; Brown et al., 2008; Spiwok and Králová, 2011), autoencoders (Chen and Ferguson,
2018), t-SNE (van der Maaten and Hinton, 2008; Duan et al., 2013; Tribello and Gasparotto, 2019)
and others (Plaku et al., 2007; Stamati et al., 2010; Noé and Clementi, 2015) have been tested in
analysis of trajectories, data compression or sampling enhancement.
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Advantage of non-linear dimensionality reduction methodsis
their ability to describe more variance in data compared to linear
methods with the same number of dimensions. This is especially
true for t-distributed Stochastic Neighbor Embedding (t-SNE)
(van der Maaten and Hinton, 2008). This method became highly
popular in many �elds, including data science, bioinformatics,
and computational linguistics.

There are two features of t-SNE that contributed to its
success. First, t-SNE converts high-dimensional points into low-
dimensional points in a way to reproduce their proximity
rather than distance. For example, for a bioinformatician
analyzing genomic data to develop genomics-based diagnosis
it is important that samples with the same diagnosis are close
to each other after dimensionality reduction. It is unimportant
how distant are samples with di�erent diagnosis, provided that
they are distant enough. In t-SNE the distances in the high-
dimensional spaceDij D kXi � Xjk are converted into proximities
pij as:

pij D
exp(� D2

ij =2� 2
i )

P
k6Di exp(� D2

ik=2� 2
i )

, (1)

where� 2
i is the variance of a Gaussian centered on a datapointXi

(discussed later). The matrix of proximities is then symmetrized.
Next, proximities in the low-dimensional spaceqij are calculated
from distances in the low-dimensional spacedij as:

qij D
(1 C d2

ij )
� 1

P
k6Di(1 C d2

ik)� 1
. (2)

Finally, positions of points in the low-dimensional space are
optimized to minimize Kullback-Leibler divergences ofpij and
qij (a sort of a distance between proximitiesp andq).

The second advantage of t-SNE lies in the fact that it uni�es
density of low-dimensional points in the output space. This
feature, which can be controlled by a parameter called perplexity,
makes visual representation of points more e�ective. Perplexity
is related to variances� 2

i of Gaussians centered on datapoints
Xi . Uni�cation of densities is done by di�erent variances� 2

i .
The user can specify the value of perplexity. t-SNE searches for
optimal values of� 2

i in order to produce values of 2�
P

j pji log2 pji

to match the prede�ned perplexity. Low perplexity (e.g., 5)
forces focus on local structure of the input data whereas larger
perplexity (e.g., 50) takes more global structure into the account.
As discussed later, this feature improves visualization by t-SNE
but at the same time it complicates application in situations when
preservation of densities is required.

Disadvantage of application of general dimensionality
reduction methods on molecular simulation trajectories isthat
these methods pick the most intensive (in terms of changes
of atomic coordinates) motions in the system. However, such
motions are often not interesting. For example, such intensive
motions may represent motions of disordered loops or terminal
chains in proteins.

Instead, for building of thermodynamic and kinetic models
or to enhance sampling it is useful to extract motions that

occur most rarely, i.e., those with the highest barriers. This
can be done by Time-lagged Independent Component Analysis
(TICA) (Molgedey and Schuster, 1994; Perez-Hernandez et al.,
2013; Schwantes and Pande, 2013). TICA extracts the most
rarely occurring transitions in the molecular system because it
correlates the state of the system with the state of the same system
after a short delay (lag). This lag can be controlled.

Here we attempt to join the advantages of t-SNE and TICA
into a single method of time-lagged t-SNE. The method was
tested on two molecular trajectories—on 200 ns simulation of
alanine dipeptide and 208.8� s simulation of Trp-cage mini-
protein folding and unfolding (trajectory kindly provided byDE
Shaw Research) (Lindor�-Larsen et al., 2011).

2. METHODS

Time-lagged t-SNE is inspired by implementation of TICA
using the AMUSE algorithm (Hyvarinen et al., 2001). We
start with atomic coordinatesX(t) recorded over timet. First,
coordinates are superimposed to reference coordinates of the
system to eliminate translational and rotational motions. After
that, time-averaged coordinates are subtracted, leading to atomic
displacementsX0(t). Next, its covariance matrix is calculated as:

CX0

ij D hX0
i (t)X

0
j (t)i , (3)

wherei and j are indexes of atomic coordinates andhi denotes
time-averaging. Next, covariance matrix is decomposed to a
diagonal matrix with eigenvalues� X0

(the square matrix with
eigenvalues on diagonal and zeros elsewhere) and eigenvectors
WX0

(the matrix with eigenvectors as columns):

CX0
WX0

D WX0
� X0

. (4)

CoordinatesX0(t) are transformed onto principal components
and normalized by roots of eigenvalues (space-whitening the
signal) to get �attened normalized projections:

Y(t) D (� X0
)
� 1=2

((WX0
)TX0(t)). (5)

A time-lagged covariance matrix is calculated as:

CY
ij D hYi(t)Yj(t C � )i , (6)

where � is an adjustable time lag. Because the matrixC is
non-symmetric it must be symmetrized as:

CY
sym D 1=2(CY C (CY)

T
). (7)

Next, this symmetric matrix is decomposed to eigenvalues� Y and
eigenvectorsWY:

CY
symWY D WY� Y. (8)

Finally, Y(t) are transformed onto principal components and
expanded by eigenvalues:

Z D (� Y)1=2((WY)TY). (9)
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FIGURE 1 | Time-lagged t-SNE (t-t-SNE) applied on 200 ns simulation ofalanine dipeptide in water. Conformations sampled in the simulations were projected into the
space of Ramachandran torsions� and  (A,E), TICA coordinates(B,F), t-SNE (C,G) and time-lagged t-SNE(D,H). Points are colored by Ramachandran torsion�
(A–D) and  (E–H).

This step expands distances in directions with highest
autocorrelations, which represent directions of rarely
occurring transitions.

It is possible to use certain number of eigenvectors with
highest eigenvalues instead of all eigenvectors. This selection may
be driven by relaxation time decays (seeWehmeyer et al., 2019)
but this is out of scope of this article.

t-SNE can be applied on distances between simulation
snapshots calculated in the space ofZ as:

Dt,t0 D kZ(t) � Z(t0)k. (10)

Low-dimensional embeddings obtained in this step are further
referred to as time-lagged t-SNE coordinates (t-t-SNE). For
the sake of comparison, low-dimensional embedding obtained
by standard TICA (without t-SNE step) and standard t-SNE
(without TICA step) were also calculated and are further referred
to as TICA coordinates and t-SNE coordinates, respectively. t-
SNE and t-t-SNE coordinates are unit-free because they are set
in order to �t the corresponding unit-free proximities (bothD
and� in Equation 1 are measured in the same units). It must be
kept in mind that t-SNE and t-t-SNE use random initiation of
low-dimensional points, so recalculation leads to a di�erentplot.

All analyses were done by programs written in Python
with MDtraj (McGibbon et al., 2015) (for reading trajectories),
PyEMMA (Wehmeyer et al., 2019) (for testing of algorithms),
numpy (Oliphant, 2006) (to implement AMUSE algorithm) and
scikit-learn (Pedregosa et al., 2011) (to run t-SNE) libraries. It
is available at GitHub (https://github.com/spiwokv/tltsne)and
using PyPI.

The trajectory of alanine dipeptide was obtained by unbiased
200 ns molecular dynamics simulation of a system containing
alanine dipeptide and 874 TIP3P (Jorgensen et al., 1983) water
molecules in Gromacs (Abraham et al., 2015). It was modeled

by Amber99SB-ILDN force �eld (Lindor�-Larsen et al., 2010).
Simulation step was set to 2 fs and all bonds were constrained
by LINCS algorithm (Hess et al., 1997). Electrostatic interactions
were treated by particle-mesh Ewald method (Darden et al.,
1998). Temperature was kept constant (NVT ensemble) at 300
K by V-rescale thermostat (Bussi et al., 2007).

The trajectory of Trp-cage folding and unfolding was kindly
provided by DE Shaw Research.

3. RESULTS

The method was tested on two molecular systems—on alanine
dipeptide and Trp-cage. In order to test time-lagged t-SNE we
compare time-lagged t-SNE with standard t-SNE and TICA.

3.1. Alanine Dipeptide
Time-lagged t-SNE was �rst applied on a trajectory of alanine
dipeptide without water and hydrogen atoms. It is important
to remove hydrogen atoms because rotamers of methyl groups
by approx. 120 deg are mathematically distinguishable but
chemically identical. The trajectory was sampled every 20 ps
(10,001 snapshots). Time lag� was set to 3 frames (60 ps). The
value of perplexity was set to 3.0 and Euclidean space was used to
calculate the distance matrixD.

The value of lag time was chosen based on TICA results.
Similar calculations with lag time set to 1 to 12 steps show that
lag time set to 1–7 works well on a simple system such as alanine
dipeptide (seeSupplementary Material). All eigenvectorsWY

were used in Equation (9).
The results are depicted inFigure 1. Plots in the space of

Ramachandran torsions show that all relevant conformations
of alanine dipeptide were sampled. Plots in the space of TICA
coordinates show that rotation around� is the slowest and
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FIGURE 2 | Time-lagged t-SNE (t-t-SNE) applied on 208.8� s of Trp-cage folding and unfolding. The trajectory was analyzed by t-SNE(A) and time-lagged t-SNE
(B–G). Points are colored by RMSD from the native structure(A,B) and by the �rst (C), second (D), third (E), fourth (F), and �fth (G) TICA coordinate.

rotation around is the second slowest motion in the studied
system (slowest in terms of number of occurrences).

Plots in the space of t-SNE coordinates have a circular
shape cut into multiple pieces by borders between di�erent
conformers. These plots show a limitation of conventional t-
SNE, which is an improper resolution of conformations. Namely,
there is a green island in the blue area of the plot colored by
� values (G).

Time-lagged t-SNE (t-t-SNE) does not su�er this problem.
The blue area in the plot generated by time-lagged tSNE is
continuous and does not contain any islands of conformations
with positive� values (H). This can be explained by the fact that
introduction of a time lag into t-SNE causes higher separation of
key conformations of alanine dipeptide.

One feature is common to the original t-SNE as well as
our time-lagged variant. This is the fact that t-SNE �attensthe
distribution of points in the output space. This results in an
almost uniform distribution of points in each minimum.

It is possible to calculate a histogram of some molecular
collective variable or collective variables and convert itinto
a free energy surface. Most common interpretation of such
free energy surfaces is that deep minima correspond to stable
states, whereas shallow minima correspond to unstable states.
This approach can be applied for conventional descriptors,
such as Ramachandran angles of alanine dipeptide. However,
due to �attening of distribution of points by t-SNE or by
time-lagged t-SNE such free energy surface is relatively �at.
Populations of di�erent states can be estimated from areas of
free energy minima rather than from their depths. In general,
time-lagged t-SNE (as well as t-SNE) must be used with caution
when applied to identify metastable states and to calculate free
energy surfaces.

3.2. Trp-Cage
t-SNE and time-lagged t-SNE analysis was performed on the
trajectory of Trp-cage folding and unfolding sampled every 20
ns (10,440 snapshots). Lag time was set to three frames (60 ns).
Similarly to alanine dipeptide, lag time was chosen based on
TICA analysis. Comparison of embeddings calculated for lag
time set to 1, 2, 3, 4, 5, 10, 15, and 20 (in number of frames) shows
that lag time 1–5 works well (seeSupplementary Material).

Perplexity was set to 10.0. Several values were tested and
perplexity set to 10 performs well in terms of the focus on local vs.
global structure of data.Supplementary Materialcontains the
results obtained for perplexity 5, 10, 20, 50, and 100. These results
indicate that time-lagged t-SNE is relatively robust in termsof
choice of perplexity and perplexity 10 and higher perform well.

Initial analysis by time-lagged t-SNE resulted in a circular
plot with multiple points located outside clusters on the edges
of the circle. This indicates that there are many points with high
distancesDt,t0. In order to eliminate these points we reduced
the number of eigenvectorsWY to top 50 eigenvectors (option
-maxpcs in the code).

The results are depicted inFigure 2. Figure 2A shows the
trajectory analyzed by conventional t-SNE colored by RMSD
from the native structure (PDB ID: 1l2y,Neidigh et al., 2002).
There is a clear relationship between t-SNE coordinates, in
particular t-SNE1, and RMSD. The native structure (in red)
forms a cluster in the top left corner of the plot. Structures
with high RMSD (in blue) are characterized by highest values
of t-SNE1.

The trajectory analyzed by time-lagged t-SNE colored by
RMSD is depicted inFigure 2B. Similarly toFigure 2Athe native
structure forms a distinct cluster. In contrast to the conventional
t-SNE, structures with high values of RMSD are scattered in the
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FIGURE 3 | Representative structures projected onto time-lagged t-SNE embeddings. Plot is colored by RMSD from the native structure (as inFigure 2B ).

large cluster in the center. This indicates that transitions between
high-RMSD structures are fast.

Figures 2C–G show the same plots colored by TICA
coordinates. The �rst TICA coordinate (Figure 2C) distinguishes
folded and unfolded structures. Plots colored by other TICA
coordinates (Figures 2D–G) in most cases show a red or blue
clusters on edges of the plot. This shows that time-lagged t-SNE
captures rarely occurring transitions characterized by TICA, but

more e�ciently than TICA itself, because these motions can be
depicted in a single plot.

Figure 3 shows representative structures of Trp-cage from
the simulation trajectory projected onto time-lagged t-SNE
embeddings. Structure 1 is the native structure. Structure7 is a
known near-native structure. Structures 2–6 were sampled from
clusters on peripheral areas of time-lagged t-SNE embeddings.
Finally, structure 8 was taken from the origin of the plot. Visual
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FIGURE 4 | Visualization of folding events(A) and kinetic traps(B). Four
selected folding events (at approx. 20, 40, 104 and 206� s in red, yellow,
green, and blue, respectively) are depicted as last 10 frames (200 ns) before
reaching t-t-SNE2< � 75. Four selected kinetic traps on edges of the plot are
depicted as connected series of snapshots. These regions were sampled for
800 (red), 140 (yellow), 400 (green), and 460 (blue) ns.

inspection indicates that structures 2–6 may be kinetic trapsof
Trp-cage folding, because these structures are characterized by
formation of numerous non-native hydrogen bonds and other
interactions. Also the near-native structure 7 is likely tobe a
kinetic trap of Trp-cage folding.

In order to further interpret the plot we visualized four
selected folding events. They are depicted inFigure 4A. These

plots show snapshots sampled last 200 ns (10 snapshots) before
folding. Unfortunately, we were not able to provide higher
resolution of time, because this would require either analysis of
a higher number of snapshots or recalculation of time-laggedt-
SNE. The former was not possible due to computational costs,
the latter due to impossibility of calculation of time-lagged t-SNE
on out-of-sample structures (discussed later). Despite limited
resolution of time, the plot shows that unfolded and folded
structures are clearly separated. The fact that some folding
processes passed clusters on edges of the plot close to the
native structure may indicate that these clusters are near-native
metastable states.

In previous paragraphs we interpreted clusters on edges of
the plot (structures 2–6 inFigure 3). We investigated how long
the system stayed in these regions. The results are shown in
Figure 4B. The system stayed in these regions for 140–800 ns.
This supports our interpretation of these regions as kinetic traps.
Interestingly, all four regions depicted inFigure 4Bwere sampled
multiple times in the simulation.

4. DISCUSSION

Dimensionality reduction methods are frequently used to analyze
data from biomolecular simulations. Linear methods such as
PCA have been used for decades, whereas application of non-
linear methods is relatively new. Various linear and non-linear
dimensionality reduction methods have various advantages
and disadvantages.

PCA and other linear methods are easy to use (no additional
parameters have to be set), they realistically map densities of
states from the high-dimensional to low-dimensional space and
it is straightforward to calculate low-dimensional embedding
for a new out-of-sample structure. On the other hand, their
performance in visualization is low because they usually require
three or more dimensions to separate key states of the
studied system.

Non-linear methods perform much better in dimensionality
reduction but mapping of densities may be distorted (this is
the case of t-SNE and its time-lagged variant, which tend to
�atten the output densities) and calculation of low-dimensional
embeddings for a new out-of-sample structure is complicated.
t-SNE is useful specially for visualization purposes.

Comparison of t-SNE and time-lagged t-SNE shows a
great advantage of our variant.Figure 2A shows that t-SNE
coordinates correlate with RMSD from the native structure. The
yellow-green-blue cloud of non-native structures in this plot
represents a pool of non-native conformations in which short-
living and long-living states overlap. On the other hand, in the
time-lagged t-SNE there are short-living states in the center and
long-living states, including the native state, are located on the
edges of the plot. In a single plot it is possible to distinguish
multiple key long-living states.

There is a disadvantage of time-lagged methods in their
dependence on the choice of lag time. Choice of lag time for time-
lagged t-SNE was driven by TICA analysis. Values of 3 frames
(60 ps, 0.03% of the whole trajectory) for alanine dipeptide and
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3 frames (60 ns, 0.029% of the whole trajectory) for Trp-cage led
to visually plausible low dimensional embeddings. This indicates
that 0.03% of trajectory size is a good initial choice of lag time.

Another disadvantage of time-lagged t-SNE is in distortionof
densities and impossibility to easily calculate low-dimensional
embeddings for a new out-of-sample structure. As an
alternative to time-lagged t-SNE it is possible to use time-
lagged autoencoders recently reported byWehmeyer and Noé
(2018). Autoencoders are feed-forward neural networks with an
hourglass-like architecture. The input signal (atomic coordinates
or other features) from the input layer are transformed via
hidden layers into the central bottleneck layer. Next, the signal
from the bottleneck layer is transformed via hidden layers into
the output layers. Parameters of the network are trained to obtain
agreement between the input and output signal. The signal in
the bottleneck layer represents a non-linear low-dimensional
representation of the input signal. Unlike classical autoencoders,
time-lagged autoencoders focus on the most rarely occurring
transitions, not on the most intensive motions (Wehmeyer and
Noé, 2018).

The clear advantage of autoencoders and their time-
lagged variant is the possibility to calculate low-dimensional
embeddings for a new out-of-sample structure. Extensive testing
of time-lagged autoencoders in the original article (Wehmeyer
and Noé, 2018) was possible owing to this fact. Time-lagged
autoencoders can be trained on a training set and tested on
a validation set, i.e., they can be evaluated by cross-validation.
Furthermore, they can be trained on a small training set and then
applied on a large set of input data. This is e�cient since the
training part is in general signi�cantly more expensive than the
calculation of embeddings on out-of-sample structures. Time-
lagged autoencoders are useful for pre-processing of structural
data for building of Markov state models.

There are limited options for calculation of t-SNE low-
dimensional embeddings for out-of-sample structures.
Therefore, t-SNE and time-lagged t-SNE are not suitable
for pre-processing of the structural data. We see the advantage of
time-lagged t-SNE (similarly to t-SNE) in visualization.

Time-lagged t-SNE in the current implementation also cannot
be used as collective variables in simulations using bias force
or bias potential because these methods require on-the-�y
calculation of low-dimensional embeddings and their derivatives
with respect to atomic coordinates. However, there are tools
to approximate such low-dimensional embeddings (Spiwok and
Králová, 2011; Sultan and Pande, 2018; Trapl et al., 2019).

One of key features of t-SNE is that it can reconstruct
proximities and not distances in the low-dimensional output
space. In time-lagged t-SNE this means that states separated by
low energy barriers are close to each other. States separatedby
large energy barriers are far from each other, but time-lagged t-
SNE does not attempt to preserve their distances accurately. This
means that two close points in the time-lagged t-SNE plot can be
connected by an energetically favorable path.

Another key feature of t-SNE is perplexity and the fact that t-
SNE �attens the distribution of points in the output space. This
is useful for visualization. For this reason t-SNE (as well astime-
lagged t-SNE) must be used with caution as a pre-processing for
calculation of free energy surfaces and for clustering. t-SNE can
also create arti�cial clusters when perplexity is not set properly.
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